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Abstract—We propose a significantly improved space mapping
(SM) strategy for electromagnetic (EM) optimization. Instead
of waiting for upfront EM analyses at several base points, our
new approach aggressively exploits every available EM analy-
sis, producing dramatic results right from the first step. We
establish a relationship between the novel SM optimization and
the quasi-Newton iteration for solving a system of nonlinear
equations. Approximations to the matrix of first-order derivatives
are updated by the classic Broyden formula. A high-temperature
superconducting microstrip filter design solution emerges after
only six EM simulations with sparse frequency sweeps. Further-
more, less CPU effort is required to optimize the filter than is
required by one single detailed frequency sweep. We also extend
the SM concept to the parameter extraction phase, overcoming
severely misaligned responses induced by inadequate empirical
models. This novel concept should have a significant impact on
parameter extraction of devices.

I. INTRODUCTION

IN OUR RECENT pioneering work [1]–[4], we introduced
the concept of space mapping (SM) optimization. The

method combines the computational efficiency of empirical
engineering circuit models, accumulated and developed over
many years, with the acclaimed accuracy of electromagnetic
(EM) simulators. This facilitates a highly efficient approach to
attacking the demanding EM design process.

In our original formulation of the SM algorithm, an upfront
effort was needed in the EM space simply to establish full-
rank conditions leading to the initial mapping between the
optimization and EM spaces. Since such initial base points
are found by simple perturbation around the starting point in
the EM space, they are unlikely to produce a substantially

Manuscript received March 1. 1995, revised July 7, 1995. This work
was supported in part by Optimization Systems Associates Inc. and by
the Natural Sciences and Engineering Research Council of Canada Grants
0GPOO07239. 0GPO042444, and STR0167080, and through the Micronet
Network of Centers of Excellence. Additional support was provided through
a Natural Sciences and Engineering Research Council of Canada Graduate
Scholarship granted to R. H. Hemmers.

J. W. Bandler, R. M. Biemacki, S, H. Chen are with Optimization Systems
Associates Inc., Dundas, Ontario, Canada L9H 5E7, and with the Simulation
Optimization Systems Research Laboratory, Department of Electrical and
Computer Engineering, McMaster University, Hamilton. Ontario, Canada L8S
4L7.

R. H. Hemmers is with the Simulation Optimization Systems Research
Laboratory, Department of Electrical and Computer Engineering, McMaster
University, Hamilton, Ontario, Canada L8S 4L7.

K. Madsen is with the Institute of Mathematical Modeling, Technical
University of Denmark, DK-2800 Lyngby, Denmark.

IEEE Log Number 9415467.

better design than the starting point itself. Hence, that ap-
proach represents a time-consuming and possibly unproductive
effort.

In this paper, we present a significantly improved approach

to SM. The method employs a quasi-Newton iteration in
conjunction with first-order derivative approximations updated
by the classic Broyden formula [5]. From an initial estimate of
the EM solution, obtained by an empirical model optimization,
we target each costly EM analysis directly at achieving the
best EM design. The results are then immediately utilized to
improve the approximation. Using this approach, we expect
to obtain a progressively improved design after each iteration.
This procedure is based on an elegant theoretical formulation
and a simple implementation strategy.

One of the key steps in SM is the model parameter identi-

fication phase. The SM technique relies on determining pairs
of corresponding EM and empirical model points obtained by
parameter extraction optimization. Accordingly, we review the
appropriate theory and techniques used in traditional parameter
extraction. In addition, we describe algorithms based on the
idea of frequency space mapping (FSM) [6]. They offer a
powerful means of overcoming the problems caused by local
minima and model misalignment.

Our new theory and techniques are illustrated through
the design of a low-loss narrow-bandwidth high-temperature
superconducting (HTS) microstrip filter [3], [4], [6]. We utilize

the user-friendly 0SA90/hope optimization system with the
Empipe interface [7] to the Sonnet em. field simulator [8].

In Section II, we review the original SM technique. In

Section III, we introduce the theory and implementation of
our new aggressive SM approach. Section IV reviews tradi-
tional parameter extraction optimization and our new FSM
algorithms. Sections V–VIII illustrate the design of the HTS
microstrip filter. Finally, Section IX contains our conclusion.

II. OVERVIEW OF THE ORIGINAL SPACE MAPPING METHOD

Let the behavior of a system be described by models in

two spaces: the optimization space, denoted by XOS, and the
EM (or validation) space, denoted by X.~. We represent the
designable model parameters in these spaces by the vectors XO$
and X.m, respectively. We assume that XOS and X,~ have the
same dimensionality, i.e., xOS c Eln and x,~ E Et”, but may
not represent the same parameters.

The X.S-space model can be comprised of empirical mod-
els, or an efficient coarse-grid EM model. Typically, the
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X,~-space model is a fine-grid EM model but, ultimately, can

represent actual hardware prototypes if time and resources per-
mit. We assume that the XO,-space model responses, denoted

by RO, (xO,), are much faster to calculate but less accurate

than the Xe~ -space model responses, denoted by R.~ (x.~).

In SM optimization, we wish to find a mapping, P, from

the X~~-space to the xo~-space,

x – P (Xem)0s — (1)

such that

RO, (P(x,~)) x R.~(x.~). (2)

We assume that such a mapping exists and is one-to-one within
some local modeling region encompassing our SM solution.
We also assume that, based on (2), for a given x.~ its image
xO~ in (1) can be found by a suitable parameter extraction
procedure, and that this process is unique.

We initially perform optimization entirely in XO, to obtain

the optimal design x:,, for instance in the minimax sense, and

subsequently use SM to find the mapped solution x~~ in X~~
as

%em = P-1(X” )0s (3)

once the mapping (1) is established. We designate xe~ as the
SM solution instead of x;~ since the mapped solution may
only be an approximation to the true optimum in X.~.

The mapping is established through an iterative process. In
our original work [1-4], we obtained the initial approximation
of the mapping, P(0), by performing EM analyses at a prese-
lected set of, at least, m base points in X.~ around the starting

point, where m is the number of fundamental functions [1].
As the first base point we may select the starting point, i.e.,

Xp(l = x.
0s> (4)

assuming xe~ and xO, represent the same physical parameters,
and the remaining m – 1 base points are chosen by perturbation

as

X(O – x(l) +Ax$; l), i = 2,3, . . ..m.
em — em (5)

This is followed by parameter extraction optimization in Xo,

to obtain the set of corresponding base points x$? according to

mi~i~ze IIRo, (x$)) – R.m (x$~) II (6)

for2=l,2,.. ., m, where II. II indicates a suitable norm. The

additional m – 1 points apart from x~ti are required merely to
establish full-rank conditions leading to our first approximation

to the mapping. Hence, these EM analyses represent an upfront
effort before any significant improvement over the starting
point can be expected. With the high cost associated with each
EM analysis, the additional m – 1 simulations represent an
inefficient component of the algorithm.

At the jth iteration, both sets may be expanded to contain,
in general, mj points which are used to establish the updated

mapping P(~). Since the analytical form of P is not available,

we use the current approximation P(~) to estimate xe~ in (3),

i.e.,

(7)

The process continues iteratively until the termination condi-
tion

is satisfied,
P(l) is our

IIRO,(X:J - Rem(x&J+l)) [1< e (8)

where ~ is a small positive constant. If so,
desired P. If not. the set of base ~oints in

(mj+l) ‘
X.~ is augmented by xe~

‘ (m, +l)
and, correspondingly, xOS

determined by (6) augments the set of base points in Xo,.
(m, +l) : p(~)-’(x:~) as

Upon termination, we set X,m = x.~
the SM solution.

III. AGGRESSIVE APPROACH TO SPACE MAPPING

A. Theory

Consider an important property of (8). When approach-
ing the SM solution, the Xe~-space model response

R.~(x!Y+l) ) will closely match the optimal Xo,-space
model response ROS(x~~), within some tolerance c. Hence,
after performing an additional parameter extraction opti-

mization in XO~, the resulting point xO.
(mj+l) = P(x$y+l))

approaches the point x~,. Stated more precisely, as j ~ M,
x~~,+l) ~ ~:~, or

1142+1) -%s[1 S q as j -+ M (9)

where q is a small positive constant and M is the number of
iterations needed to converge to an SM solution.

Based on this observation, we can now introduce our new
aggressive approach. As in (1), we assume that the vector of
X. S-space model parameters is a nonlinear vector function, P,
of the X.~ -space model parameters. We define our goal by

setting q to O in (9). Hence, we consider the set of n nonlinear
equations of the form

f(xem) = o (10)

where

f(xem) = P(xem) – x:, (11)

and x~~ is a given vector (optimal solution in X.,).
Let x$2 be the jth a ~~mation to the so;y~~ of (10)

rand f(~) written for f (x~~ ). The next iterate x~~ is found

by a quasi-Newton iteration

x(~+l) = x$& + h(~)
em (12)

where h(~) solves the linear system

B(~)h(J) = –f(~). (13)
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B(J) is an approximation to the Jacobian matrix

(14)

IV. MODEL PARAMETERIDENTIFICATION

A. Review of Traditional Parameter Extraction

/., One of the key steps of SM involves parameter extraction

and is established based on results from all previous iterations.
In our implementation, B(lJ is set to the identity matrix. The
approximation to the Jacobian matrix is updated by the classic
Broyden formula [5]

Incorporating (13) into (15) gives a simplified updating for-
mula

B(3+1)= B(j) + f(~+l)h(J)T

h(~)Th(~)
(16)

(3+1)where f (~‘1) is obtained by evaluating (11) at xe~ using

the parameter extraction optimization described in (6).
This new approach is significantly more efficient than

our original SM algorithm. The reason for this is that each

point x$~+l) is generated not merely as a base point for
establishing the mapping, but also as a step toward the SM
solution, which corresponds to solving the nonlinear system

of Eq. (10). Using the new method, we avert from performing
time-consuming and possibly unproductive EM analyses at
perturbations around the starting point (4). Instead, we begin
with a straightforward initial estimate and attempt to improve
the EM design in a systematic manner.

B. Implementation

We now present a straightforward implementation of our
new aggressive SM algorithm. First, begin with a point,

x:, ~arg min{ll(xO,) }, representing the optimal design in

X.,, where II(xO,) is some appropriate objective function.
Then, our algorithm proceeds as follows

Step O.
~nitidize X$J =x. ~ [~) = ~

f(l) = p(x$~) – & j = 1.

>

Stop if llf(l)ll< q.

Step 1. Solve Bt~)h(~) = –f(~) for h[~).

Step 2. Set x!~+l) = x$2 + hb)

Step 3. (J+l) “Evaluate P (xe~ ).

Step 4. Compute f(’+l) = P(x$21)) – x:,.
If llf(~+llll < q, stop.

Step 5. Update B(’) to B(’+l).
Step 6. Set j =j+ 1; go to Step 1.

C. Comments

In Steps O and 3, P (x,~) is obtained by parameter extrac-

tion as described in (6). In Step 2, x,~‘3+1) may be snapped

to the closest grid point if the EM simulator uses a fixed-grid
meshing scheme. If this is the case, Step 5 should employ (15)
as the updating formula. The impact of a fixed grid on SM will
be investigated in further studies.

optimization in order to match responses, For each point xe~
we need to find a corresponding point XO,. Assuming that our
response of interest is a function of frequency, define the vector

&m. (%n) ~ &m(xem, w,), i=l, z,. ... k (18)

represents the X~~-space model response simulated at k fre-
quency points w,. For notational brevity, we use R~~(x,~, w)
to denote a generic response function. In practice, a number of
different response functions (such as the scattering parameters
ISII I and IS211) maybe simultaneously involved in parameter
extraction. Also, define the vector

R.. (x.. ) 2 [R.,, (Xos ) RO,, (XO,) ~. ~RO,k(xOJ]T (19)

where

represents the Xo.-space model response.
The extraction problem can be formulated by minimizing a

scalar objective function

minii ll(x.. ) (21)

where H is typically formulated as an /P norm of the vector
of error functions [9]

e(xo, ) ~ [el(xo.) ez(xo.) . . . ek(xo,)]T (22)

where the individual errors are defined as

et(x..)%+[Rxl (xos) – ~em, (Xem)] , i=l,z,...,k

(23)
and w, are some nonnegative weighting factors. Note, in our
parameter extraction formulation, the vector xe~ and hence
Re~(x,~) are fixed while the elements in XO, are optimized.

One of our choices for the objective function is the novel
Huber norm [10], [11]

k

~(xo.) = ~ pk(ei(xo.)) (24)
Z=l

where

{

e~/2
Pk(ez) k

if Iezl < k
Iile,l – k2\2 if Ietl > k

(25)
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which is robust against large errors and flexible w.r.t. small

variations in the data.

As noted earlier, parameter extraction is an important step in

SM. This can be a serious challenge, especially at the starting

point if the XOS-space model and Xe.-space model responses
are severely misaligned. By performing a straightforward
data-fitting optimization from such a starting point using the
traditional approach, the process may be trapped by local
minima [6]. To address this issue, we explore significant
enhancements to traditional parameter extraction,

B. A New Approach: Frequency Space Mapping (FSM)

At a given point, typically we will observe a general

similarity between the responses Ro, and R,~ even if they
are severely misaligned. With this in mind, the parameter
extraction problem can be better conditioned if we align the
responses along the frequency axis first. Specifically, Rem is
kept fixed while we adjust RO, in some appropriate manner.
This is accomplished by employing a reference angular fre-
quency w = w,~ and a transformed angular frequency wO,
related by

w., = Pw(w). (26)

For our purposes, a suitable mapping can be as simple as

frequency shift and scaling given by

Wos=flw+ti (27)

where o represents a scaling factor and 6 an offset.
This brings us to Phase 1 of our FSM approach. Here, we

need to determine aO and 6., which effectively aligns Ro, and
R,~ in the frequency domain. This is done by holding both
model parameters XO, and xe~ constant and optimizing only
the parameters 00 and 60. This is described by the following

optimization:

mini~ize IIROS(xOS, a~, &) - &~(x.rnll (28)
go? o

where II . \I is typically the lz, /1 or Huber norm.
RO,(XO,, 00, 6.) represents the X.,-space model response

with (20) replaced by

&st(xOs, ~o, &) ~ &s(xos, Oow, + 6.), ‘i = 1,2,.. . ,k.
(29)

In Phase 2 of our FSM approach, we optimize the Xo,-
space model parameters xO, such that ROS matches Rem while
again x~~ remains fixed. In addition, starting from a = 00
and 6 = 60 we force c and 6 to obtain the identity mapping
(o = 1 and 8 = O). We have developed three algorithms
to realize this goal: a sequential FSM algorithm (SFSM) and
two exact-penalty function algorithms (EPF), of which one is
based on the /1 norm objective while the other is suitable for

minimax optimization.
In the SFSM algorithm, we perform a sequence of optimiza-

tion in which the frequency mapping is gradually reduced
to the identity mapping while xO. is optimized at each step.
Hence, at the jth iteration of the SFSM algorithm we set both

(~)m(~J and 6(~j and then optimize xO~ such that ROS matches

R .~. This can be written as

min~rnize IIROS(x&), a (~), @)) - Rem(xem)ll

%s
j=o, l,. ... K (30)

where

(K -j)~b)=l+(ao-l) ~ (31)

and

~(~) = do (K; ~) . (32)

K is setto some integer and determines the number of steps

in the sequence. After the full sequence of optimizations,

x~~) is the solution to the parameter extraction problem since
a(~j = 1 and 6[K) = O.It should be clear that for larger values

of K we increase the probability of success in the parameter
extraction problem at the expense of longer optimization time.

In the EPF algorithms, we need to perform only one

optimization, The tl norm version of the EPF formulation
is given by

minimize
%s ,g,~

{llRos(xos,O, ~)- Rem(xan)l]I+ @l~ -11 + CY21~1}

(33)

where al and cuz are suitably large positive weighting factors.
In the minimax version of the EPF formulation [12], we have

minimize { ~~~~~[U (xOs, 0, 6), U(xo., CT,6)– Q!tgl]} (34)
xos,g>~ _ —

where

U(XO, ) ~, 6) = ll&(x.s, ~, ~) – Rem(Xem)ll> (35)

[1
0—11–CTg(o,6)=~ (36)

–6

and a, > 0 for i = 1,2,3,4. For both EPF formulations, the
values of a, are kept fixed and must be sufficiently large to
obtain the identity mapping in (27) and hence the solution to
the parameter extraction problem.

While the frequency transformation concept is familiar to
microwave engineers, particularly filter designers, here it is
defined in a novel way. Our FSM is established through an
iterative process and facilitates automated compensation for
inadequate modeling. This significantly improves robustness
of the parameter extraction phase of the overall SM technique
as needed in (6).

V. THE HTS FILTER

We consider the design of a four-pole quarter-wave par-
allel coupled-line microstrip filter, as illustrated in Fig. 1

[31, [41, [61. L1, LZI, and Ls are the lengths of the parallel
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Is+
v

x

Fig. 1. The structure of the HTS filter [3], [4], [6].

TABLE I
MATERIALANDPHYSICALPARAMETERSFORTHEOSA901hope AND em MODELS

OSA90/hope
Model Model M%%el

Parameter Parameter Parameter
Value Vatue

substrate dielectric constant 23.425 23.425
substrate thickness (roil) 19.9516 19.9516
sh]elding cover height (roil) W 250
conducting metat thickness (roil) 1.9685E-2 o
substrate dielectric loss tangent 3.OE-5 3.OE-5
resistivity of metal (tlm) o 4.032E-8
surface roughness of metal (roil) o
magnetic 10sstangent o
surface reactance (11/sq) o
x-grid cell size (roil) 1
y-grid cell size (roil) 1.75

coupled-line sections and S1, S2, and S3 are the gaps between
the sections. The width W = 7 mil is the same for all the
sections as well as for the input and output microstrip lines.
The input and output line lengths are LO = 50 roil. The
thickness of the lanthanum aluminate substrate used is 20 mil
and the dielectric constant is assumed to be 23.425, The design

specifications imposed on ISzl I are as follows

IS21I <0.05 in the stopband

IS21 I 20.95 in the passband

where the stopband includes frequencies below 3.967 GHz
and above 4.099 GHz and the passband lies in the frequency
range [4.008 GHz, 4.058 GHz]. This corresponds to a 1.2570
bandwidth. LI, L2, L3, SI, SZ,and S3 are considered as design
parameters. LO and W are kept fixed.

We employ both analytical/empirical models available in

0SA90/hope and a fine-grid Sonnet em model. The HTS filter
empirical model is assembled from fundamental components
such as microstrip lines, coupled lines, and open stubs. The
OSA90/hope empirical model and Sonnet em model material
and physical parameters are listed in Table I. They are fixed:
On a Sun SPARCstation 10, approximately 1 CPU hour is
needed by em to simulate the filter at a single frequency for
an on-grid point.

VI. EMPIRICAL MODEL DESIGN OF THE HTS FILTER

We started the design of the HTS filter using the
OSA90/hope empirical model. The minimax solution is listed
in Table II (i). Fig. 2 shows the \Szl I and IS1l I responses
after optimization.

o ,----------7-------------<

‘-v-’’:-:-----------:----””-----l

X; .........
40”

3.W 3.345 3.933 4.093 4.077 4.121 4.185

frequmsy (miz)

(a)

fWISWY(GHz)

(b)

Fig. 2. The OSA90/hope empirical model responses after minimax optimiza-
tion. (a) ISzl I (—) and ISI ~I (- -) for the overall band and (b) the passband

details of ISZl 1.

TABLE II
EMPIRICALMODEL DESIGNOFTHE HTS FILTER

Parameter Minimax Minimax

(roil) Solution Solution
(i) (ii)

L1 188.33 137.4
Lz 197.98 248
L3 188.58 138.6

S1 21.97 17.35
S2 99.12 120.9
S3 111,67 75.9

~ and LOare kept fixed at 7 mil and 50 roil, respectively.

Next, we investigate the robustness of the empirical model
nominal solution. The same optimization variables, namely
L1, L2, L3, S1, S2, andl S3 as in the nominal minimax design
are selected. Again, LO and W are kept fixed. We perform
a number of empiricad model minirn~x optimizations, each
starting from a different starting poinlt. We use 50 starting
points randomly spread around the minimax solution with
a +1% deviation. Fig. 3(a) plots the ISM I responses for all
50 starting points. The bar chart in Fig. 3(b) depicts the
Euclidian distances between the reference minimax solution

and the perturbed starting points. Fig. 4 shows the corre-
sponding diagrams after minimax optimizations and clearly
illustrates the existence of multiple ]minimax solutions for
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frequeaey(r3H2)

(a)

~ 3.*

12.4

jj 1.6

x,8

‘o 10 20 30 40 so

Stardagpoiatindex

(b)

Fig. 3. (a) IS21 I of the empirical model at 50 random starting points and (b)
the Euclidian distances between the perturbed starting points and the reference
minimax solution.

rrerpncy(aHz)

I

[“”
Star@ paiatindex

(b)

Fig. 4. (a) IS21 I of the empirical model at the 50 optimized solutions and
(b) the Euclidian distances between the optimized solutious and the reference
minimax solution.

the HTS filter. Table II (ii) lists another minimax solu-

tion. The responses of the two solutions are nearly identical

Fig. 5.
model

*Y (-)

(a)

40’:+
S.wr 3.” 3.969 4023 4.077 4.121 4.145

ffw’=y (a)

(b)

A comparison between (a) IS21 I and (b) ISI I \ using the empirical
and em at the two mirrimax solutions.

-1 I
y.. !_.....-~

3.%? 3.947 3.973 4 4027 4.053 4.c@

fqUSUCY(GW

Fig. 6. Re{Sl I } simulated using the empirical model (— )andern(---)
at the starting point before parameter extraction optimization.

despite the large numerical deviation in the parameter val-

ues.
We perform EM analyses at the two minimax solutions.

The em results differ significantly from the empirical model
responses, as shown in Fig. 5. However, the two em analyses
exhibit strong similarity. Our aim then, is to use SM to
find a solution in the EM space which will substantially
reproduce the optimal performance predicted by the empirical
model.

VII. ILLUSTRATIONOF FSM

A critical step in SM is parameter extraction optimization to
match the empirical model response to the EM model response.
At the starting point, the empirical and IEM model responses
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-1~
3.33 3.347 3.973 4 4.027 4.033 4.LM

fWUPW (Gfi)
.

Fig. 7. Re{S11 } simulated using the empirical model (— ) and em (- - -)
at the solution of a straightforward 41 parameter extraction optimization (a
local minimum).

Fig. 8. Visualization of the 11 norm versus two of the model parameters
L2 and L3; superimposed is the trace of the straightforward 11 optimization.
The optimization converged to a local minimum instead of the trne solution
represented by the valley riear the front of the graph.

Fig. 9. Re{S1l } simulated using the empirical model (— ) and em (- --)

after Phase 1 of the FSM algorithm.

may be severely misaligned, as shown in Fig. 6. By performing

a straightforward 11 optimization from such a starting point,

the extraction process can be trapped by a local minimum, as
illustrated in Figs. 7 and 8.

We apply our new FSM approach to overcome the difficul-

ties imposed by local minima. First, Phase 1 aligns RO, and

R.m along the frequency axis by optimizing the frequency

shift and scaling parameters while holding xO, and X.m fixed,

3.947 3.973 4 4:W 4053 4.m

fm=v Km

Fig. 10. Re{Sl 1} simulated using the empirical model (— ) and em
(- - -) after Phase 2 of the FSM algorithm.

(a)

: : 1:
-1.5 I

3.307 3.333 4011 4.W3 4!053 4.07? 4.033

(b)

Fig. 11. The em simulated ISz 1I response of the HTS filter at the solution
obtained using the aggressive SM approach (— ). The 0SA90/hope empir-
ical model solution (- - -) is shown for comparison. Responses are shown for
(a) the overall band and (b) the passband in more detail.

with XO. = xe~. The result is shown in Fig. 9. Next, we

perform Phase 2 employing the SFSM algorithm with K = 5
to obtain both the identity mapping and the optimal values of
xO,. Fig. 10 depicts the resulting match.

VIII. AGGRESSIVESM OPTIMIZATIONOF THE HTS FILTER

We perform SM optimization applying our new aggressive

SM algorithm with the Broyden update starting from the
empirical model minimax solution listed in Table II (i). The
SM solution is listed in Table III. This SM result was obtained
using only 15 frequency points per EM frequency sweep. The
solution emerges after only 6 EM analyses (frequency sweeps).
Fig. 11 compares the filter responses of the empirical model
optimal design and the em simulated SM solution.
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TABLE III
RESULTSOF SM OPTIMIZATION

Parameter
(roil) SM Solution

L1 181

L, 201
L~ 180
S1 19.25
S2 80.5
s~ 84

Number of
EM Analyses 6

All parameter values are rounded to
the nearest grid-point. Wand LOare
kept fixed at 7 mil and 50 roil,
respectively.

IX. CONC&JSION

We have proposed a new automated space mapping ap-
proach incorporating the classic Broyden updating formula to

aggressively exploit every electromagnetic analysis. We have
described and applied our new approach to the electromag-
netic design of a high-temperature superconducting microstrip

filter. In addition, we have analyzed the robustness of the
empirical model nominal solution for this filter indicating the
existence of multiple minimax solutions. We have pioneered
the application of the space mapping concept to the parameter
extraction phase by developing new frequency space mapping
algorithms in order to overcome poor starting points induced

by inadequate empirical models. The application of frequency

space mapping significantly improves the robustness of the
parameter extraction process which is a key step in space
mapping optimization.
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